How oxygen concentrators work

Let’s learn about TELLURIUM!

 

Native Tellurium

 

Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth’s crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth, and partly to tellurium’s low affinity for oxygen, which causes it to bind preferentially to other chalcophiles in dense minerals that sink into the core.

Tellurium-bearing compounds were first discovered in 1782 in a gold mine in Kleinschlatten, Transylvania (now Zlatna, Romania) by Austrian mineralogist Franz-Joseph Müller von Reichenstein, although it was Martin Heinrich Klaproth who named the new element in 1798 after the Latin word for “earth”, tellus. Gold telluride minerals are the most notable natural gold compounds. However, they are not a commercially significant source of tellurium itself, which is normally extracted as a by-product of copper and lead production.

Commercially, the primary use of tellurium is copper (tellurium copper) and steel alloys, where it improves machinability. Applications in CdTe solar panels and cadmium telluride semiconductors also consume a considerable portion of tellurium production. Tellurium is considered a technology-critical element.

Tellurium has no biological function, although fungi can use it in place of sulfur and selenium in amino acids such as tellurocysteine and telluromethionine. In humans, tellurium is partly metabolized into dimethyl telluride, (CH3)2Te, a gas with a garlic-like odor exhaled in the breath of victims of tellurium exposure or poisoning.

Tellurium has two allotropes, crystalline and amorphous. When crystalline, tellurium is silvery-white with a metallic luster. It is a brittle and easily pulverized metalloid. Amorphous tellurium is a black-brown powder prepared by precipitating it from a solution of tellurous acid or telluric acid (Te(OH)6). Tellurium is a semiconductor that shows a greater electrical conductivity in certain directions depending on atomic alignment; the conductivity increases slightly when exposed to light (photoconductivity). When molten, tellurium is corrosive to copper, iron, and stainless steel. Of the chalcogens (oxygen-family elements), tellurium has the highest melting and boiling points, at 722.66 K (841.12 °F) and 1,261 K (1,810 °F), respectively.

Tellurium adopts a polymeric structure consisting of zig-zag chains of Te atoms. This gray material resists oxidation by air and is not volatile.

Naturally occurring tellurium has eight isotopes. Six of those isotopes, 120Te, 122Te, 123Te, 124Te, 125Te, and 126Te, are stable. The other two, 128Te and 130Te, have been found to be slightly radioactive, with extremely long half-lives, including 2.2 × 1024 years for 128Te. This is the longest known half-life among all radionuclides and is about 160 trillion (1012) times the age of the known universe. Stable isotopes comprise only 33.2% of naturally occurring tellurium.

A further 31 artificial radioisotopes of tellurium are known, with atomic masses ranging from 104 to 142 and with half-lives of 19 days or less. Also, 17 nuclear isomers are known, with half-lives up to 154 days. With the exception of beryllium-8 and beta-delayed alpha emission branches in some lighter nuclides, tellurium (104Te to 109Te) is the lightest element with isotopes known to undergo alpha decay.

The atomic mass of tellurium (127.60 g·mol−1) exceeds that of iodine (126.90 g·mol−1), the next element in the periodic table.

 

 

 

Contact Foxolution >>